
Highlights
An Experimentally Informed Continuum Grain Boundary Model
S.Syed Ansari, Amit Acharya, Alankar Alankar

• The presented continuum grain boundary model incorporates experimentally mea-
sured grain boundary energy data as a function of misorientation to simulate various
idealized grain boundary evolutions and their equilibria (in 1–D). To our knowledge,
while natural, this is novel, and results in significantly different energetic character-
istics than typically considered in theoretical (and simulation-based) studies of grain
boundary behavior.

• A computational scheme is presented to handle the constraints arising from the pres-
ence of kinks in orientation profiles and the strong non-convexity of the experimentally
measured energies.

• The present model is demonstrated using two energy density functions, namely, a
smooth energy density (SED) and cusp energy density (CED).

• Various evolutions and their equilibria (in 1–D) recover idealized features of real phys-
ical systems such as equilibrium high–angle grain boundaries (HAGBs), grain rota-
tion, grain growth, heavily deformed (static) microstructure often observed after the
deformation process, and strong metastability. All the transition layers represent dis-
location walls, and many of the equilibria resemble polygonized domains.
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Abstract
A continuum grain boundary model is developed that uses experimentally measured grain
boundary energy data as a function of misorientation to simulate idealized grain boundary
evolution in a 1–D grain array. The model uses a continuum representation of the misori-
entation in terms of spatial gradients of the orientation as a fundamental field. The grain
boundary energy density employed is non–convex in this orientation gradient, based on
physical grounds. Simple gradient descent dynamics of the energy are utilized for idealized
microstructure evolution, which requires higher–order regularization of the energy density
for the model to be well–set; the regularization is physically justified. Microstructure evolu-
tion is presented using two plausible energy density functions, both defined from the same
experimental data: a ‘smooth’ and a ‘cusp’ energy density. Results of grain boundary equi-
libria and microstructure evolution representing grain reorientation in one space dimension
are presented. The different shapes of the energy density functions representing a common
data set are shown to result in different overall microstructural evolution of the system.
Mathematically, the constructed energy functional formally is of the Aviles–Giga/Cross–
Newell type but with unequal well–depths, resulting in a difference in the structural feature
of solutions that can be identified with grain boundaries, as well as in the approach to
equilibria from identical initial conditions. This study also investigates the metastability
of grain boundaries. It supports the general thermodynamics belief that they persist for
extended periods before eventually vanishing due to the lowest energy configuration favored
by fluctuations over infinite time.
Keywords: Grain boundaries, Grain rotation, Coarsening, Microstructure evolution

1. Introduction

Microstructure is the primary factor in deciding the bulk properties of polycrystalline ma-
terials [1]. The understanding of grain boundaries plays a vital role in assessing overall
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polycrystalline microstructural evolution and equilibria [2–11]. This work develops a grain
boundary model at the continuum scale, informed by experimentally measured grain bound-
ary energy.

It is a simple, but significant, physical fact about solids (and, generally, most phases of
condensed matter free from electromagnetic effects) that a superposed rigid rotation of a
body does not incur an energy cost. Thus, in any local description of the energy density of
a solid, a rotation (or an orientation w.r.t some reference frame) cannot affect the energy
density, as all rotations are energetically equivalent. Rotation gradients can be ascribed
such a cost. Grain boundaries are narrow transition regions of gradients in orientation.
Based on an understanding of the structure and solutions of Allen-Cahn equations, while
it is tempting to fit the modeling of grain boundaries into such a scheme employing a non-
convex energy density in orientations with gradients penalized accordingly, the rotational
invariance mentioned above makes the idea physically unpalatable. On the other hand, the
standard idealization of viewing a collection of grains joined by a grain boundary network
as kinematically described by an orientation field can and, arguably, should be, thought
of as an elastic medium with defects, with the distortion field on the body constrained
to take values in the set of all proper orthogonal tensors. The typical energy density of
a local elastic medium is rotationally invariant disallowing any nontrivial dependence on
the pointwise orientation, but allowing a higher order dependence on the rotation gradient,
work-conjugate to volumetric couple stresses, and resulting torques per unit area on sur-
faces. Such an approach also has the natural advantage of allowing a seamless conceptual
generalization of coupling the mechanics of grain boundaries to mechanical stress and ap-
plied loads when the ignored elastic strain is accounted for instead of only rotation, along
with the defect dynamics mediating such coupling. It is such a model that we pursue here,
in its simplest possible realization in 1 space dimension and time, for the abovementioned
reasons of physical appropriateness and holistic, subsequent generalization.

The fundamental ingredient of the proposed model is a grain boundary energy density
function that is directly inferred from experimental data reported in the literature as a
function of misorientation (∆θ). A model parameter l is invoked that represents a physically
measurable grain boundary width, and it is assumed that all measured misorientations ∆θ
occur over this width. With this direct correspondence, the measured grain boundary energy
density variations as a function of misorientation (see, e.g., Fig. 1) are converted to functions
of orientation gradients (∇θ) as follows

∆θ = l∇θ. (1)
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Figure 1: Energies at 650oC for symmetrical 〈1 0 0〉 and 〈1 1 0〉 tilt boundaries in aluminum originally
reported in Hasson and Goux [12]. Reprinted from Recrystallization and Related Annealing Phenomena,
Second Edition, F.J. Humphreys, M. Hatherly, The Structure and Energy of Grain Boundaries, Page No.102,
Copyright (2004), with permission from Elsevier [13].

Since measured grain boundary energy densities are strongly non–convex, representing
the important physical fact that grain boundaries occur at special misorientations, our grain
boundary energy density is naturally so, as well. At this point in time, we adopt a gradient
flow of the energy functional based on the energy density to describe simple (local) energy
minimizing dynamics; as is well–understood, a non–convex energy density in orientation
gradients results in a gradient flow dynamics that cannot possess continuous dependence
w.r.t. initial data on orientations, a feature arising from the dynamics of the backward
heat equation (locally) [14]. Consequently, we regularize with a second–orientation gradient
energy penalty to obtain an energy functional given by

F =

∫ [
ϕ(|∇θ|) + ϵ2|∇2θ|2

]
dv, (2)

where ϕ is the energy density function designed from experimental data, and the other term
in the functional being the energy penalty to sharp kinks in the orientation profile (that also
provides a robust principal part for the corresponding gradient flow evolution equation). We
physically justify the regularization.

Our model looks formally similar to the Aviles–Giga [15] (A–G) and Cross–Newell [16]
(C–N) functionals, if in Eq. (2), the ϕ is replaced by ϕAG = (1− |∇θ|2)2, an energy density
with equal–depth wells (and in C–N the regularizer would be (∇ · ∇θ)2). The A–G and
C–N models have been extensively studied in the mathematical literature, see, e.g., [17–20].
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Figure 2: A model bar represents a 1–D array of grains separated by straight vertical grain boundaries.
Patterns inside each grain represent its orientation.

One difference between the typical A-G functional that have been studied and our model is
that ours physically requires unequal depths to endow grain boundaries with non–vanishing
energy content. In the standard interpretation of the A–G model, the troughs of the energy
density correspond to the phases (i.e., regions of slope ±1, the ‘grains’) and the kinks as the
phase or grain boundaries (in 1–D).

In our model, the grain boundary is simply a phase, as are the grains (of different spatial
extent). We show numerically that the dynamics of the model reflects qualitatively expected
behavior. We are not aware of a gradient flow of the A–G, C–N type models in 1 space
dimension that has been shown to represent phase boundary motion (without any further
coupling to other fields). In our case, this is realistic as, for a simplistic model allowing
spatial variations in only one space dimension, only straight physical grain boundaries can
be represented that extend from one boundary of the domain to another as shown in Fig. 2,
and it is experimentally observed that straight (as opposed to curved) boundaries in bi–
crystal configurations (involving boundaries without constraints of multi–junctions) do not
move in the absence of stress or electromagnetic fields [21–24].

We also mention that in the elasticity of compatible phase transformations, this can be
an appropriate mathematical model as well [25], with an important physical difference in
interpretation: there the phases correspond to constant deformation/displacement gradients,
whereas in our model, the ‘bulk’ phases (i.e., excluding the narrow phase boundary ‘phases’)
correspond to constant rotation gradients, with the result that the work–conjugate quantities
there (in the context of such a mathematical model) are forces and stresses, whereas in our
case it is moments and couple–stresses. Kobayashi, Warren, and Carter [2] developed a
two–dimensional (2–D) continuum grain boundary (KWC) model using two variables ∇θ
and η (degree of crystallinity) to simulate grain growth by curvature–driven grain shrinkage
and grain rotation mechanisms. It has been extended to three dimensions (3–D) where
the grain boundary energy is defined on a five–dimensional misorientation, and inclination
space [26]. According to the viewpoint put forward in [2], the earlier WCK model [27] is
not adapted to handle non–convex grain boundary energy density functions for the reason
that localized transition layers cannot be predicted as global minimizers of their energy.
However, the type of model energy density function studied in WCK [27] is arguably, the
most natural way of representing the entire spectrum of measured grain boundary energies
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in polycrystalline materials. An important philosophical difference between our work (with
an energy density component similar in spirit to that in [27]), and the subsequent KWC
and KWCL [28] model is that we do not insist on single transition layer grain boundary
solutions to be global minima of our energy functional and our simulations - which require a
somewhat careful numerical treatment of the term involving the non–convex energy density
in the governing gradient–descent equation - show that such solutions, corresponding to local
minima of the functional, persist over significant times and are stable to physically natural
high wave–number, small amplitude perturbations as shown in Appendix A.

In general, our experimental grain boundary energy density–informed model displays
a high level of metastability in its solutions that may be physically interpreted as grain
boundary equilibria.

An outline of the paper is as follows: A summary of essential notation is followed by
a brief literature review in Section 1.1, and the mathematical development of the model
is discussed in Section 2. Section 3 discusses the numerical implementation of the model.
Section 4 discusses the simulations of microstructure evolution, including grain growth by
grain rotation in 1–D. Evolution of a ‘random’ initial condition to an equilibrium 1–D array
of grains is also discussed in Section 4, with resemblance to an idealized grain microstructure
with high–angle grain boundaries and some grains containing a high concentration of sub-
boundaries. Concluding remarks are presented in Section 5.

Notation
F Total free energy of the system
φ Overall free energy density
l Typical width of a grain boundary

M Grain boundary mobility
θ Grain orientation
ϕc Cusp energy density (CED) function
ϕs Smooth energy density (SED) function
∆θ Misorientation between two grains
L Total length of the domain
k Wave number

∂xθ Orientation gradient in one space dimension
ϵ Material constant penalizing sharp kinks in orientation

1.1. A brief survey of relevant literature
Phase–field models have helped simulate microstructural evolution [29–32]. A detailed re-
view of various phase–field models is available in [33]. Grain growth is simulated in [34–39]
using Allen–Cahn [40] type equations that use a non–conserved order parameter and a non–
convex energy density function.
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The effect of triple junctions and grain boundary thickness on grain growth have been
studied using the Allen–Cahn type phase–field model in [41]. The aforementioned models
[34–39, 41, 42] employ orientation itself as a variable that enters the energy density, which is
not consistent with frame indifference/rotational invariance of the energy density [2]. Allen–
Cahn type equations are also believed not to be able to represent grain growth by the grain
rotation mechanism [2].

A variational approach is employed by Ta’asan and co–workers [43] to compute curvature–
driven grain growth based on Mullins’ model [44] where the grain boundary energy density
is a function of the grain boundary plane normal, along with the Herring condition [45, 46]
imposed at the triple junctions. Grain growth in a large system is simulated by Esedoglu
and co-workers [47] based on mean curvature-driven motion while satisfying the Herring
condition at triple junctions. Their algorithm uses the linear diffusion equation and signed
distance functions [48].

Glasner computationally explored the gradient flow dynamics of the A–G functional [20],
as well as derived a matched-asymptotic-expansion based model for the evolution of grain
boundaries and junctions corresponding to the singular limit of the gradient flow of the
A–G functional. Grain boundary motion in the limit model is found to arise from curvature
of the interfaces and variation in the “line energy” along grain boundaries. Interestingly,
based on the results of numerical simulations, Glasner speculates on the possibility of grain
boundaries terminating in the bulk, in other words to the presence of disclinations. Oudet et
al. [49] introduced a diffuse interface approximation of branched transport. The model has
some similarities with ours in that it involves a concave energy density function (|u|β, 0 <
β < 1) corresponding to the solution variable u (our non–linearity is in the gradient) and
a regularisation term. The corresponding minima of the energy density is at u = 0 and
because of a non-vanishing specified divergence constraint (or specified average constraint),
large values of |u| on small sets also have to occur, which may be thought of as another
phase. Energy concentrates on the boundary between the phases corresponding to u = 0
and |u| = ∞.

A crystal plasticity model combined with the continuum phase–field model (KWC) is
used to simulate shear–induced grain boundary motion, grain boundary sliding, curvature–
driven grain boundary rotation, and curvature–driven grain shrinkage in unison [50]. In the
context of a polycrystal, 2–D [51] and 3–D [52] models by Basak and Gupta are notable
in the sense that they consider diffusion controlled incoherent interfaces in the presence of
junctions. Their framework is categorized as a sharp interface model and employs curvature
dependent GB energy and surface diffusion motivated by the work of Gurtin and co-workers
[53].

Efforts to deduce relationships between the evolution of grain boundaries/networks and
geometric parameters describing them based on experimental data appear to be in a state
of continual evolution. According to [54], the five-parameter grain boundary distribution
and grain boundary mobility are strongly correlated. In contrast, it is reported in [36]
that there is no correlation between the five-parameter grain boundary distribution and
grain boundary mobility. According to [55], there is almost no correlation observed between
curvature and grain boundary velocity, but a strong correlation is observed between the five-
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parameter grain boundary distribution and grain boundary velocity in FCC metals. Thus,
it is perhaps fair to say that there is a need for a definitive model that mechanistically
describes grain boundary network evolution and the experimental observations above while
allowing for experimentally measured descriptions for the energies of grain boundaries.

Alternative to the curvature–driven models, Srolovitz and co–workers presented a con-
tinuum equation of motion for a grain boundary and corresponding models based on the
discrete disconnection mechanism in a series of recent works [5, 56, 57] and extended it to
the polycrystals [3].

To our knowledge, there are no existing phase–field models that use energy densities
that are rotationally invariant (or frame-indifferent) and use experimentally measured or
atomistically determined grain boundary energies to simulate the dynamics of different types
of grain boundaries. Further, the experimentally measured grain boundary energy density of
aluminum symmetrical tilt boundaries shown in Fig. 1 indicates that the equilibrium high–
angle grain boundaries (HAGBs) corresponding to troughs have lower energy than certain
low–angle grain boundaries (LAGBs) that explain the existence of equilibrium HAGBs. We
are unaware of any rotationally invariant phase–field based grain boundary models that
account for this aspect. Considering these points, the main objectives of the current work
is to develop a model:

• in which an experimentally measured GB energy function drives the evolution of grain
boundaries,

• that addresses rotational invariance,

• that captures equilibrium transition layers in a 1–D grain array as an idealized repre-
sentation of equilibrium HAGBs,

• is built upon a robust computational scheme to handle the constraints arising from
the presence of kinks in orientation profiles and the strong non-convexity of the ex-
perimentally measured energies,

• that recovers some aspects of idealized grain rotation and grain growth in 1–D.

The model presented in this work can capture equilibrium transition layers in a 1–D grain
array as an idealized representation of equilibrium HAGBs. Occasionally, it also produces
a wide equilibrium transition layer representative of grains with a large number of subgrain
boundaries. Our model is able to address the grain growth mechanism by grain reorientation
(idealized to be along one space dimension). Our work is complementary to [43] in that their
grain growth model considers the grain boundaries and triple junctions as discrete objects,
with additional rules for topological changes in the grain boundary network, whereas we view
such features as localized features of a continuous field of orientation. The possibility of the
energy density to be a function of the misorientation is mentioned in [43], with the bulk of
the model development and implementation ignoring this dependence, focusing instead on
the dependence of the energy on the boundary normal alone in 2–D. Our current work is in
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1–D (so the boundary normal is constant) and we focus on the dependence of the energy
density on the misorientation.

Our model can be placed in the context of the continuum mechanics of dislocation and
g.disclination defects [58–62]. In this setting, grain/phase boundaries are represented by
(third–order tensor) eigenwall fields, S, concentrated on the physical grain boundary re-
gions, and their terminations represent g.disclinations - triple junctions, e.g., represent the
superposition of three g.disclination curves (for an example related to a penta–twin, see
[61]). An evolution equation, determined essentially from the statement of conservation of
g.disclination topological charge Π, for the eigenwall field is given by (using ‘small deforma-
tion’ kinematics for the sake of conveying ideas)

Π = −curlS; Πijk = −εkrs∂rSijs

∂tΠ = −curl
(
Π × V (S)

)
; ∂tΠijk = −εkmn∂m

(
εnrqΠijrV

(S)
q

)
=⇒ ∂tS = −(curl S)× V (S) +∇f ; ∂tSijk = −εkrs(εrmn∂mSijn)V

(S)
s + ∂kfij

where V (S) is the velocity of the g.disclination field Π, and f is a free second–order tensor
field to be specified that does not affect the conservation of g.disclination strength. The
above kinematically fundamental evolution statement states that the S field transports or
‘convects’ only at places where a g.disclination defect is present - physically, in regions of
incompatible curvature, e.g., at multi-junctions or when the boundary is curved (a straight
region of a uniform eigenwall distribution has no g.disclinations in it). If now one invokes
the ansatz that the S field is a gradient (S = ∇ω), so that it cannot have any g.disclination
content and furthermore assumes that

• the free energy density of the model is of the form

E(U e) +G(Y ) + ϕ(S) + ϵ2|∇S|2

where E is the elastic energy density, U e is the elastic distortion, G is an energy density
related to strain gradients with Y := ∇U e−S, ϕ is an experimentally measured grain
boundary energy density function, and ϵ a material parameter; and

• U e is constrained to be the field ω resulting in ∂YG = 0 (which is realizable in the
absence of externally applied torques),

then the thermodynamic driving force for the field f is given by

div ∂∇ωϕ− 2ϵ2 div div∇2ω. (3)

Assuming a simple one–constant mobility produces an evolution equation for ω given by

∂t ωij = M [∂k(∂∇ωϕ)ijk − 2ϵ2 ∂k∂k∂l∂l ωij], (4)

which may be thought of as a tensorial analog of the gradient flow equations of the A–G
functional. In one space dimension and time, the above equation is our Eq. (11) to follow.
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An observation worthy of note – due to the a priori elimination of any g.disclination defects
– is that this model cannot transport or move the grain boundary /eigenwall field while
allowing it to evolve ‘in place’, and we observe this in our simulations. When the restrictive
assumptions made in obtaining this ‘simplified’ model are relaxed, the overall model natu-
rally allows for the interaction of stress, couple stress, and dislocation plasticity with grain
boundary motion, based on the fundamental kinematics of line defect dynamics. Further-
more, the operational method for defining a grain boundary in this setting by initializing
the S field [61] shows that all 5 macroscopic parameters defining a boundary (the misorien-
tation and the orientation of the interface normal) are naturally included in the definition
of the ϕ function in this setting. While these are attractive features, the model (accounting
for disclination defects) is ‘expensive’ in terms of the number of physically mandated fields
involved. A relatively less expensive model, still containing most of the topological com-
plexities and capable of describing a layered ‘smectic’ polycrystalline medium, is available
in the literature [63]. In this generalized sense, our work is in line with the disconnection
dynamics based model of Srolovitz and co–workers [5, 57], and complementary to that of a
unified grain boundary evolution model with polycrystal plasticity [50].

2. The Continuum Grain Boundary Model

We work in 1 space dimension (x) and time (t), with the spatial domain (Ω) being the
interval [0, L]. The free energy of the system (F) is assumed to be of the form

F =

∫
Ω

φ
(
∂xθ, ∂

2
xθ, l

)
dx, (5)

where φ (∂xθ, ∂
2
xθ, l) is the overall free energy density given by

φ
(
∂xθ, ∂

2
xθ, l

)
= ϕ (∂xθ) + ϵ2

(
∂2
xθ
)2

. (6)

Here, the length scale l, a typical grain boundary width, is involved in the definition of the
function ϕ and the material parameter ϵ. The latter is required on dimensional grounds and
represents an energetic penalty to sharp kinks in the orientation profile.

The chosen class of the energy density is roughly justified as follows. Assuming the
energy density at any point x to be a function of the misorientation, ∆θ(x), at that point
over a length scale of l, is given by

∆θ(x) = θ(x+ l)− θ(x) ≈ l∂xθ(x) +
1

2
l2∂2

xθ(x) + · · · .

Thus, for a system free energy written as
∫
Ω
Φ(∆θ) dx, the energy density can be approxi-

mated to leading orders as

Φ(∆θ(x)) ≈ φ
(
∂xθ(x), ∂

2
xθ(x), l

)
,

with its right hand side defined as in Eq. (6), and the function ϕ defined from experimental
measurements as described in Section 2.1. Thus, our higher order regularization arises from
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allowing for a more accurate accounting of the effect of misorientation on system energy
beyond orientation gradients.

The gradient flow evolution of the functional F is expressed as

∂tθ = −M
δF
δθ

, (7)

where M is a scalar mobility, and it multiplies the variational derivative of the functional
F . The variation of F in the direction η about the state θ is expressed as

δF =

∫
Ω

[
∂2
x

(
∂φ

∂ (∂2
xθ)

)
− ∂x

(
∂φ

∂ (∂xθ)

)]
η dx+ η

[
∂φ

∂ (∂xθ)
− ∂x

(
∂φ

∂ (∂2
xθ)

)]
∂Ω

+

∂xη

[
∂φ

∂ (∂2
xθ)

]
∂Ω

. (8)

The variational derivative is then given by

δF

δθ
= ∂2

x

(
∂φ

∂ (∂2
xθ)

)
− ∂x

(
∂φ

∂ (∂xθ)

)
. (9)

Some of the possible boundary conditions from Eq. (8) are

θ = constant; ∂xθ = 0; (10a)

θ = constant; ∂φ

∂ (∂2
xθ)

= 0; (10b)

∂φ

∂ (∂xθ)
− ∂x

(
∂φ

∂ (∂2
xθ)

)
= 0;

∂φ

∂ (∂2
xθ)

= 0; (10c)

∂xθ = 0;
∂φ

∂ (∂xθ)
− ∂x

(
∂φ

∂ (∂2
xθ)

)
= 0. (10d)

Substituting Eq. (9) into Eq. (7), one obtains

∂tθ = −M

(
∂2
x

(
∂φ

∂ (∂2
xθ)

)
− ∂xJ

)
, (11)

where J= ∂φ
∂(∂xθ)

. Eq. (11) is the governing equation for this work, along with the boundary
conditions

(∂xθ)x=0 = 0,(
∂φ

∂ (∂xθ)
− ∂x

(
∂φ

∂ (∂2
xθ)

))
x=0

= 0,

(∂xθ)x=L = 0,(
∂φ

∂ (∂xθ)
− ∂x

(
∂φ

∂ (∂2
xθ)

))
x=L

= 0.

(12)
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2.1. Grain boundary energy density functions from experimental data
The grain boundary energy as a function of misorientation is a well–established experimental
measurement [12, 64, 65]. The experimentally measured energy data of symmetrical tilt
boundaries in Al is shown in Fig. 1. These experimental data points can be fitted in many
ways.

In their pioneering work, Read and Shockley [66] theoretically deduced a grain boundary
energy density function based on the mechanics of dislocations. This model is valid for small
misorientations and is consistent with a cusp in the energy density at 0 misorientation.

The variational method employed to compute interfacial energies of tilt boundaries from
atomic configurations showed the existence of cusps in the ϕ function [12]. A grain boundary
energy function with cusps is proposed for fcc metals based on the essential five macroscopic
degrees of freedom [67]. The grain boundary energy density (ϕ) in copper evaluated by
molecular dynamics (MD) simulation showed a smooth ϕ function [68]. Various shapes of ϕ
are reported in the literature, and the exact shape of ϕ is not an established fact.

The evolution Eq. (11) takes a dimensional grain boundary energy density function as
input, in particular one fitted to experimentally measured grain boundary energy density
data. As a representative example, the data in Fig. 1 corresponds to the range of misori-
entations (∆θ = 0 to π radians) and is converted to be a function of (∂xθ) as described in
Eq. (1). This function is then extended as an even function in the range −π/l to +π/l. The
resulting function defines the variation in the fundamental period of a periodic function ϕ
defined on the real line, which is used in our typical calculation.

The energy density function ϕ within the fundamental period is divided into N segments.
The ϕ(∂xθ) is accessed by

ϕ(∂xθ) = Rq(∂xθ) ∂xθ
s
q ≤ ∂xθ ≤ ∂xθ

f
q ,

where Rq(∂xθ) is the qth segment of ϕ(∂xθ) function, ∂xθsq and ∂xθ
f
q are the start and end

points of the qth segment, respectively, and q varies from 1 to N .
We fit the experimental data of Hasson and Goux [12] to two types of the ϕ functions,

namely,

• a smooth energy density (SED) that we refer to as ϕs defined in Section 2.1.1, and

• a cusp energy density (CED), referred to as ϕc defined in Section 2.1.2.

The SED function is a cubic spline interpolation of the entire experimental data set, cap-
turing all energy troughs in the experimental data (assumed to be the ‘ground truth’ here),
including relatively higher energy ones. The CED function fits selected experimental data
points using piecewise-concave quadratic segments, connected by smooth segments around
the local minima of the energy density data. These functions are non–convex and have
troughs of unequal depths. The gradient flow dynamics of these two types of the ϕ functions
are subsequently compared.
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Figure 3: Fitting of a smooth curve for grain boundary energy density as a function of ∂xθ corresponding
to the data obtained from experimental results [12] where, W1,W2, ...W8 are the various wells in the SED
function.

2.1.1. Smooth energy density (SED) function
The expression for the SED (ϕs) function corresponding to the grain boundary energy density
data in Fig. 1 is given by

Rq(∂xθ) = B
(
aq (∂xθ)

3 + bq (∂xθ)
2 + cq∂xθ + dq

)
∂xθ

s
q ≤ ∂xθ ≤ ∂xθ

f
q , (13)

where B is a (dimensional) material constant used to scale the data from relative to actual
grain boundary energy density. It sets the energy scale of the problem. The parameters
aq, bq, cq, and dq define the cubic polynomial for the qth segment of the overall spline, and
ensure that the overall energy density function is a continuously differentiable function in
the fundamental period. The SED function interpolating the experimental data, and its first
derivative are shown in Fig. 3. It has physical dimensions of an energy density and Eq. (13)
is plugged into the overall free energy of the system in Eq. (5) to attain the final evolution
equation corresponding to ϕs.

2.1.2. Cusp energy density (CED) function
Experimentally measured data is often fitted to (logarithmic) cusp type grain boundary
energy density functions in the literature [12, 64], following the Read–Shockley model [66].

As already mentioned, the CED function consists of piecewise-concave quadratic seg-
ments, connected by smooth segments around local minima of the energy density data. Let
A be the set of indices that identify the 5th degree polynomials around the local minima,
and let C be the set of indices that identify the piecewise-concave quadratic segments, with
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Figure 4: Cusp type fit for grain boundary energy density as a function of ∂xθ corresponding to the data
obtained from experimental results [12]. The subplot inside the figure shows the smooth transition of ϕ′

c

near the ∂xθ = 1.2 trough.

A and C being disjoint sets. Then the expression for the CED function, ϕc, is

1

B
Rq(∂xθ) =


aq (∂xθ)

5 + bq (∂xθ)
4 + cq (∂xθ)

3

+dq (∂xθ)
2 + eq∂xθ + fq, q ∈ A

aq (∂xθ)
2 + bq∂xθ + cq, q ∈ C

∂xθ
s
q ≤ ∂xθ ≤ ∂xθ

f
q . (14)

The function ϕc consists of N = 2p− 1 segments where p is the total number of troughs.
Fig. 4 shows the concave quadratic polynomials, each between two troughs of the exper-
imentally measured grain boundary energy density data of [12]. Each concave quadratic
polynomial passes through three experimental data points and the corresponding coefficients
of the concave quadratic polynomials are aq, bq and cq, q ∈ C. Each 5th degree polynomial
is defined between two concave quadratic polynomials in a small range of ∂xθ = 1 × 10−2

around an energy density trough. Their values and slopes are continuous with the adjacent
concave quadratic polynomials at the junctions. Furthermore, the fitted ϕc is designed to
align with experimental data at the trough, and its slope is set to zero at this point. These
six constraints collectively necessitate the use of at least a fifth-degree polynomial. This rig-
orous selection criterion underscores the rationale for employing a fifth-degree polynomial
between two concave quadratic polynomials. These 5th degree polynomials with coefficients
aq, bq, cq, dq, eq and fq, q ∈ A, also pass through the experimentally measured data points at
troughs, with 0 slope there.

The subplot in Fig. 4 shows the continuous and smooth transition of ϕ′
c (derivative) at

the ∂xθ = 1.2 trough. As with the SED function, the CED function expressed in Eq. (14)
is plugged into the overall free energy of the system in Eq. (5) to attain the final evolution
equation corresponding to ϕc.
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The governing equation shown in Eq. (11) can be non–dimensionalized as

∂t̃θ = −α∂4
x̃θ + ∂x̃J̃ (∂x̃θ) , (15)

where,

x = lx̃, t =
t̃

MB
, ∂xθ =

1

l
∂x̃θ, ∂tθ = MB∂t̃θ, α =

2ϵ2

Bl4
.

where we recall that l represents the width of the grain boundary, M is the grain boundary
mobility, ϵ is the strength of the energy penalty to sharp kinks in the orientation profile. The˜over a variable represents the non–dimensionalized quantity of the corresponding variable.

Henceforth, we work solely with the non-dimensional problem, but the overhead ˜ are
dropped for notational convenience.

In case the θ profile has enough smoothness, it is possible to operate on the J term with
the gradient in Eq. (15) using the product rule. This produces the form

∂tθ = −α∂4
xθ + J2 (∂xθ) ∂

2
xθ. (16)

where J2(∂xθ) :=
(

∂2

∂(∂xθ)2
ϕ
)
(∂xθ). There are natural conditions where the θ profile could

have kinks in it, and there is not enough smoothness in the θ profile to use the product
rule. In such situations, the equation in the form Eq. (16) does not make sense and its use
produces spurious results as analyzed in Appendix B.

Therefore, the evolution equation Eq. (15) is used in the present work with a correspond-
ing numerical implementation that can handle the kinks and preserves the jump conditions,
as demonstrated in Section 4.

3. Numerical Implementation

The Eq. (15) is numerically discretized using the central difference formula in space and by
the forward Euler method in time and the corresponding fully explicit numerical discretiza-
tion is given by

θt+dt
i − θti

dt
= −α

[
θti+2 − 4θti+1 + 6θti − 4θti−1 + θti−2

(∆x)4

]
+

J
(
∂xθ

t
i+ 1

2

)
− J

(
∂xθ

t
i− 1

2

)
∆x

, (17)

where,
∂xθ

t
i+ 1

2
= (∂xθ)

t
i+ 1

2
=

(
θti+1 − θti

∆x

)
,

∂xθ
t
i− 1

2
= (∂xθ)

t
i− 1

2
=

(
θti − θti−1

∆x

)
,

∆x is the uniform spatial grid size, i is the node† number, and dt is the time step. t and
t + dt represent discrete time instants. θpi represents the value of θ at the ith node at time
p. The rest of the terms in Eq. (17) follow a similar analogy.

†Nodes are the discrete points located at x = i∆x where the discrete field θ is determined.
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The fourth–order term (∂4
xθ) is evaluated at the nodes whereas the J term is evaluated on

the ∂xθ calculated at the cell centers‡(∂xθ)i± 1
2

to avoid the problem of numerical instability
due to the kinks. Eq. (17) is rewritten and used in the form

θt+dt
i = θti

[
1− 6αdt

(∆x)4

]
+ θti+1

[
4αdt

(∆x)4

]
+ θti+2

[
−αdt

(∆x)4

]
+ θti−2

[
−αdt

(∆x)4

]
+ θti−1

[
4αdt

(∆x)4

]
+

dt

∆x

(
J
(
∂xθ

t
i+ 1

2

)
− J

(
∂xθ

t
i− 1

2

))
. (18)

Forward and backward difference formulae are used at the boundaries.
We note that for α = 0, Eq. (18) imposes the jump condition J |x+ = J |x− , where J |x±

are the limits of the evaluation of J from the right and left of x, respectively, for Eq. (15)
(assuming θt to be an intergrable function). This is significant when there is a discontinuity
in the function x 7→ J(x) at the point x, as happens when there is kink in x 7→ θ(x) at x.
In these situations, our code imposes this jump condition exactly for a kink at node i. Of
course, when α 6= 0 the term remains as a component of a consistent discretization of the
PDE we wish to solve to explore our model.

3.1. Von Neumann stability analysis
Von Neumann stability analysis provides time-stepping constraints for discretized constant
coefficient linear partial differential equations, including finite difference schemes [69]. The
J term in Eq. (15) is strongly nonlinear. Hence, the strategy we adopt is to formally write
our equation in the form

∂tθ = −α∂4
xθ + J2 (∂xθ) ∂

2
xθ, (19)

presume it to be a constant coefficient, perform a von Neumann stability analysis, deduce
the time step constraint(s) corresponding to the J2 value at each node, and accept the
minimum of these estimates over the domain. Here, J2 at node i is defined as J2((∂xθ)i)
where (∂xθ)i = (θi+1 − θi−1)/(2∆x). The growth factor for the explicit scheme Eq. (17) is
obtained from the expression

θt+dt
k =

(
1− αdt(2 cos(2k∆x)− 8 cos(k∆x) + 6)

(∆x)4
+

J2dt(2 cos(k∆x)− 2)

(∆x)2

)
θtk,

resulting in the stability constraint given by

∣∣∣∣1− αdt(2 cos(2k∆x)− 8 cos(k∆x) + 6)

(∆x)4
+

J2dt(2 cos(k∆x)− 2)

(∆x)2

∣∣∣∣ ≤ 1+O(dt) ∀ 0 ≤ k ≤ ∞

(20)

‡The region between two nodes is considered a cell. The cell center is the midpoint of a cell.
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(well-posed growth of the solution has to be allowed for J2 < 0, α > 0) where,

0 ≤ (2 cos(2k∆x)− 8 cos(k∆x) + 6) ≤ 16; −4 ≤ (2 cos(k∆x)− 2) ≤ 0.

The stability constraints for the scheme are given by (∆x > 0):

dt ≤



∆x2

2J2
, α = 0, J2 ≥ 0

No viable time step, α = 0, J2 < 0
∆x4

8α
, α > 0, J2 = 0

∆x4

8α
, α > 0, 0 < ∆x ≤

√
4α
|J2| , J2 < 0

∆x4

2(4α+|J2|∆x2)
, α > 0, J2 ≥ 0.

(21)

As already mentioned, the time step (dt) is calculated at all the nodes according to the
stability constraints in Eq. (21), and the least value among all of them is used as the stable
time step to solve Eq. (18).

4. Results and Discussion

The results presented in this section are generated using the explicit numerical scheme
described in Section 3. The adaptive time stepping (dt) expressed in Eq. (21) is multiplied
with a factor of 0.75 for all simulations. The simulations consistently utilize a uniform mesh
size (∆x) of 0.1, unless explicitly stated otherwise.

Before discussing detailed simulations, we briefly outline the goals of the exercise we
undertake in this Section.

First, we note that the two energy functions chosen, i.e., ϕc and ϕs, are fitted to a
single experimental data set. In particular, both energy density functions have an identical
set of local minima. With this in mind, a primary question we explore is to what extent
the ‘nonequilibrium shape’ of the energy density functions, i.e., all characteristics of the
function beyond the specification of the local minima, affect the prediction of equilibria and
time-dependent approach to it.

Second, given the nature of the energy functions employed, grain boundary equilibria
can at most be metastable states of the simulation systems considered. We computationally
check the existence and stability of such metastable states.

Various evolutions and their equilibria, the latter always interpreted ‘loosely’ as max-
imum changes in the orientation in the whole domain being less than a specified (non–
dimensional) threshold that is deemed physically reasonable, are discussed. These simula-
tions recover idealized features of real physical systems as follows:

• equilibrium high–angle grain boundaries (HAGBs) observed in actual polycrystalline
materials;

• grain rotation observed in real polycrystalline materials;

• grain growth during annealing;
16



• heavily deformed (static) microstructure often observed after the deformation process
in actual polycrystalline materials;

• dislocation walls and polygonized domains in equilibria.

4.1. Initial condition with a single transition layer in a deep energy density well
Polycrystalline materials are found often in states that have grain boundaries between grains
that appear to be static. This case study aims to test the model in producing an equilib-
rium transition layer between two regions of piecewise constant orientation, i.e. a bicrystal.
According to the literature, a misorientation of ∆θ ≤ 10◦ is considered as the grain interior
(including the sub-grain boundaries) and ∆θ > 10◦ is considered as the grain boundary
(HAGBs) [13]. These ∆θ ranges are converted to ∂xθ as described in Eq. (1) and ∂xθ is
non-dimensionalised as shown in Eq. (15). Now, the grain interior is defined as ∂xθ ≤ 0.1745
(analogous to ∆θ ≤ 10◦) and a grain boundary is defined as ∂xθ > 0.1745 (analogous to ∆θ
> 10◦).

With this notion, the initial condition shown in Fig. 5a represents a bicrystal configu-
ration with a transition layer/grain boundary in the center where ∂xθ = 1.2, corresponding
to a local energy minimum of the SED energy shown in Fig. 3. All the results in Fig. 5 are
generated using this energy function.

We note that the initial condition contains a genuine discontinuity in orientation gradient
at the kinks, and both grains and the grain boundary interior belong to convex parts of the
energy density function (i.e., take orientation values belonging to convex regions of the
energy density function).

The system is allowed to evolve without the influence of the higher–order smoothing
term in Eq. (15) by choosing α = 0. From Fig. 5a, it is evident that the orientations do not
change significantly as a function of time and achieve the prescribed equilibrium criterion
defined by maxx|(θt+dt(x)− θt(x))/dt| < 1× 10−3, at t = 0.61.

It is also demonstrated from Fig. 5b that the difference in total energy between the initial
and the final configuration is not significant. It indicates that the chosen initial condition
is close to the equilibrium configuration. From Fig. 5b, also note that the energy decrease
is initially steep and the rate of change decreases and tends to become flat at t ≈ 0.61.
It indicates that there is a negligible driving force for the system to evolve further and
equilibrium is reached.

An identical study is performed by fixing the equilibrium criteria as maxx|(θt+dt(x) −
θt(x))/dt| < 1× 10−14 and energy rate |(F t+dt−F t)/dt| < 1× 10−14 where F t and F t+dt are
the total free energies of the system at the previous and current time step, respectively. The
results replicate the earlier results obtained with the equilibrium criterion maxx|(θt+dt(x)−
θt(x))/dt| < 1× 10−3. Therefore, the equilibrium criterion max|(θt+dt − θt)/dt| < 1× 10−3

is used for the rest of the studies unless stated explicitly (and we use the shorthand max
to indicate maxx). The simulations in Fig. 5c and Fig. 5e aim to simulate idealized
grain rotation in 1–D that is reminiscent of grain rotation observed in real polycrystalline
materials [70, 71]. Fig. 5c shows the results corresponding to α = 0 and an initial condition
with ∂xθ = 1.125 at the transition layer. This is slightly away from the ∂xθ = 1.2 equilibrium
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(a) (b)

(c) (d)

(e) (f)

Figure 5: The left column of the figures shows the temporal evolution of θ for (a) ∂xθ=1.2, (c) ∂xθ=1.125
and (e) ∂xθ=1.285 narrow transition layer (l = 1) initial conditions and the evolution of corresponding
total free energies are shown in the right column of figures in (b) (d) and (f), respectively. The energy
density function is SED and α = 0. The system produces the final equilibrium profile corresponding to
max|(θt+dt − θt)/dt| < 1× 10−3 and |(F t+dt − F t)/dt| < 5× 10−5.
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(a) (b)

Figure 6: Temporal evolution of θ is shown in (a) for ∂xθ = 1.23 narrow transition layer (l = 1) with
α = 1× 10−3. The total free energy evolution is shown in (b). The system produces the final equilibrium
profile corresponding to max|(θt+dt − θt)/dt| < 1× 10−3 and |(F t+dt − F t)/dt| < 5.1× 10−5.

trough but still in the convex region of the SED function. The grains (flat regions in θ) start
moving away from each other by rotation. The misorientation between grains increases due
to rotations of grains and produces an equilibrium ∂xθ = 1.2 transition layer at t = 18.73.
Similarly, for the initial condition of ∂xθ = 1.285 at the transition layer (see Fig. 5e), the two
grains rotate towards each other during evolution and equilibrium is achieved at t = 18.7
(see Fig. 5f). The final ∂xθ at the transition layer is 1.2 which is the same as in the other
two cases. The impact of mesh size on grain rotation is investigated by simulating the initial
condition shown in Fig. 5c with different mesh sizes. The results indicate that mesh size
does not affect grain rotation. The total energy plots shown in Fig. 5d and Fig. 5f follow the
same trend as in Fig. 5b. The values of the total energy converge asymptotically to ≈ 0.52
and align with the grain boundary energy corresponding to ∂xθ ≈ 1.2 (W4) well in Fig. 3,
when the system achieves equilibrium in all the three α = 0 cases. Analogous to the total
free energy of single grain boundary in Fig. 5, Fig. 6 depicts an initial condition with two
grain boundaries positioned far apart. As these boundaries are non-interacting and distant,
their corresponding total energy asymptotically converges to ≈ 1.05 in Fig. 6 for both SED
and CED functions, mirroring the total free energy of two individual grain boundaries in
Fig. 5.

To analyze the effect of α > 0 on the evolution of the orientation field, we experiment
with various α values, ranging from 0 to 5, to identify an optimal α value that would render
∂xJ more influential than ∂4

xθ in Eq. (15). This is done because ∂xJ is considered to be the
primary factor in grain boundary evolution based on experimental data, while the inclusion
of the fourth-order term is necessary to address stability concerns related to kinks. Thus,
our objective is to strike a balance by determining an α value that effectively incorporates
both the experimental data and stability concerns. The α = 0.37 is one of the values that
serve this purpose. Therefore, α = 0.37 is considered and the initial condition shown in
Fig. 5a is used. The subplot in Fig. 7a shows that the transition of ∂xθ is smooth from 0
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(a) (b)

Figure 7: Temporal evolution of θ is shown in (a) for ∂xθ = 1.2 narrow transition layer (l = 1) with α = 0.37
and a mesh size (dx) of 0.08. The total free energy evolution is shown in (b). The system produces the final
equilibrium profile corresponding to max|(θt+dt − θt)/dt| < 1× 10−3 and |(F t+dt − F t)/dt| < 3.12× 10−4.

to 1.2 whereas, for α = 0, the transition of ∂xθ is sharp from 0 to 1.2 as shown in Fig. 5a.
These results demonstrate that α = 0.37 smooths the θ profile by eliminating kinks that is
analogous to grain boundary relaxation.

The initial condition described in Fig. 7a is also used to study the evolution of ∂xθ =
1.2 transition layer with α = 0.37 corresponding to the CED function. The equilibrium
transition layers shown in Fig. 7a are similar but the time to reach equilibrium, when using
the CED function, is (1/5)th of that in the case when SED function is used. The reason for
this in all likelihood is that the CED function shown in Fig. 4 has higher non–convexity than
the SED function shown in Fig. 3. Fig. 7b shows the total energy evolution corresponding
to Fig. 7a. The equilibrium energy for the CED function is higher than that for the SED
function. These results signify that the shape of the chosen energy density function influences
the dynamics of the evolution to reach the equilibrium profile as well as the final equilibrium
energy of the system.

The initial condition presented in Fig. 7a is also utilized to examine the evolution of the
∂xθ = 1.2 transition layer with α = 0.37 and boundary condition described in Eq. (10a) cor-
responding to the SED function. The grain boundary evolution closely resembles the final θ
configuration in Fig. 7a, and within the grains, a slight gradient is observed to accommodate
the applied boundary condition described in Eq. (10a). Additionally, we employed the final
equilibrium θ profile obtained in Fig. 7a as the initial condition with the boundary condition
in Eq. (10a) to verify whether the model attains the equilibrium configuration depicted in
Fig. 7a under the boundary condition in Eq. (10a). The initial and final conditions overlap,
indicating minimal change. The total free energy remains nearly constant, affirming that
the metastable state in Fig. 7a can be achieved with the boundary condition in Eq. (10a)
as well.

From these results, it can be concluded that the present model with the SED and the
CED functions is capable of simulating rotation in 1–D between grains by reducing the
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overall energy of the system.
Finally, we show that, with α > 0, this grain boundary/transition layer is a stable

configuration to small amplitude, high wave-number perturbations. This is demonstrated
in Appendix A.

4.2. Initial condition with multiple transition layers at troughs
Polycrystalline materials subjected to some form of activation energy such as temperature
and deformation lead to grain growth by the combined effect of grain boundary motion
and grain rotation to eliminate the orientation difference between them. These orientation
differences cause the formation of grain boundaries leading to excess energy in the polycrys-
talline system. The grain growth occurs to reduce the overall energy of the system by either
decreasing the grain boundary area or eliminating the grain boundaries [13]. This study
aims to show the capability of the model to simulate grain growth by grain rotation in 1–D.

The initial condition in Fig. 8a shows 3 grains with different orientations where the
∂xθ between grain 1 and grain 2 is 1.2 and between grain 2 and grain 3 it is 0.65. These
initial transition layers both lie in (local) troughs of the energy density function, with the
latter being a much higher local minimum (of the energy density). The system evolves by
using the SED function with α = 0.37, and equilibrium is reached at t = 57.03. The final
equilibrium θ profile shows that grain 2 and grain 3 combine to form grain 4 by elimination
of the ∂xθ = 0.65 transition layer, and the transition ∂xθ = 1.2 is retained between grain 1
and grain 4 even though both the transition layers belong to the SED function troughs. The
reason for this behavior is that the activation energy required to eliminate the transition
layer with ∂xθ = 0.65 is much less than the activation energy required to eliminate the
transition layer with ∂xθ = 1.2. From the final θ profile in Fig. 8a, it is also evident that
grain growth occurs by grain rotation. The evolution of the initial condition described in
Fig. 8a with the CED function and α = 0.37 produces an equilibrium θ profile similar to the
SED function. However, the equilibrium is achieved faster as compared to the SED function.
Fig. ?? shows the evolution of energy as a function of time corresponding to the SED and
the CED functions. The equilibrium energy of the system is higher for the CED function
as compared to the SED function and is achieved in less time. These results suggest that
the dynamics of the system evolution and equilibrium energy of the system are influenced
by the shape of the energy density functions used.
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(a) (b)

Figure 8: Temporal evolution of θ is shown in (a) having multiple transition layers (l = 1) using the SED
function and α = 0.37. The evolution of total free energy is shown in (b). The system produces the final
equilibrium profile corresponding to max|(θt+dt − θt)/dt| < 1× 10−3 and |(F t+dt − F t)/dt| < 5× 10−5.

4.3. Evolution from the initial condition with an arbitrary, nonequilibrium, random distri-
bution of orientations

A recrystallized polycrystalline material consists of large numbers of grains with random
orientations. Recrystallization is followed by grain growth. This case study focuses on the
study of microstructure evolution that resembles such grain growth in an idealized sense.

Fig. 9a shows the initial condition with ∂xθ varying randomly within the limit −π to π.
According to the definition of grain interior and grain boundary described in Section 4.1,
there are 53 grains in Fig. 9a and α is considered to be 0.37 for this simulation.

The initial condition shown in Fig. 9a is set to evolve with both the SED and CED
functions. The corresponding results are shown in Fig. 9b and Fig. 9c respectively. The
final equilibrium θ profiles corresponding to the SED and CED functions have 26 and 20
grains, respectively.

The final equilibrium θ profiles in Fig. 9b and Fig. 9c also show that ∂xθ = ±1.2,
corresponding to the deepest local minima of the energy density, are the stable transition
layers corresponding to α = 0.37 amongst all possible ∂xθ available in the initial condition.
The grain growth is higher for the CED function than for the SED function, even though
the time taken by the CED function to achieve equilibrium is approximately half of the time
taken by the SED function. The width of the grain boundary between grain 1 and grain
2, as shown in Fig. 9c, after evolving with the CED function, is approximately equal to the
size of the grains in the system. In general, physically, the width of the grain boundary is
much smaller than the size of the grains. The wide transition layer may be considered as an
idealized proxy of a grain in equilibrium containing a large number of subgrain boundaries in
the form of dislocation walls, often observed after large deformations in real polycrystalline
materials.

Fig. 9d shows the evolution of energy with respect to the time corresponding to the
SED and the CED functions. The energy of the final equilibrium θ profile is higher for the
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SED function than that for the CED function; the CED equilibrium result has fewer grain
boundaries than the one that uses the SED function.

The total number of grains decreases in both cases which signifies the occurrence of grain
growth. The increased grain sizes are shown in Fig. 10a and Fig. 10b. The grains present
in the equilibrium θ profile are binned according to their sizes in Fig. 10a and Fig. 10b
corresponding to the SED and CED functions, respectively. A large fraction of grains has
a non–dimensional size less than 10 in both the final equilibrium θ profile after evolution
using the SED and CED functions. This signifies that both functions produce grains with
almost similar sizes for the given initial condition.

From these results, it is clear that the model is able to simulate idealized grain growth
reminiscent of that in polycrystalline materials with a large number of randomly oriented
‘non-equilibrium’ grains. The simulation also produces equilibrium grain boundaries in a
1–D grain array, including HAGBs, as is often observed after grain growth. As in earlier
cases, the shape of the energy density function influences the dynamics of the evolution and
the final equilibrium θ profile.
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(a) (b)

(c) (d)

Figure 9: The temporal evolution of θ corresponding to initial random orientations as shown in (a) using
the SED function (b) and using the CED function (c). The evolution of total free energy is shown in (d).
The system evolves with α = 0.37 and produces the final equilibrium profile corresponding to max|(θt+dt −
θt)/dt| < 1× 10−3 and |(F t+dt − F t)/dt| < 2× 10−4 where G1,G2,.,GN are the indices of the grains.

(a) (b)

Figure 10: Number of grains in the final equilibrium θ profile using the SED function (a) as shown in Fig. 9b
and using the CED function (b) as shown in Fig. 9c, binned based on grain size in each case.
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4.4. Initial condition with a single, wide transition layer in a deep well
This case study focuses on the stability of a wide transition layer that is an idealized rep-
resentation of a grain with high dislocation content. Such grains are often observed after
heavy, inhomogeneous deformation and have a continuously varying orientation [13, 72].

The orientation profile in Fig. 9c is used as an initial condition, and on evolution using
the CED function shows that the wide ∂xθ = 1.2 transition layer at the left of the domain
seems to persist in time. The transition layer has a width close to the size of the grains
present in the system. Therefore, this transition layer may be interpreted as a grain with a
continuously varying orientation formed by more than one subgrain boundary coming close
to each other as a result of the equilibration process.

Fig. 11a shows an initial condition with a wide transition layer placed between two grains
and corresponding results, on evolution using the SED function. The system equilibrates
satisfying max|(θt+dt − θt)/dt| < 1 × 10−14 at t = 483. Evolution using the CED function
shows results similar to those for the SED function. Fig. 11b shows the evolution of total
energy of the system for both the SED and CED functions, and as in most cases, the
equilibrium θ profile produced by the CED function has higher energy than the equilibrium
θ profile produced by the SED function and this is achieved sooner. Next, we explore
the possibility of such a wide transition layer (equivalently, grains with high dislocation
content) being produced from non–equilibrium initial condition (which can be interpreted
as a partial signature of metastability of such configuration). A simulation is conducted
with an initial wide transition layer situated away from the equilibrium trough at ∂xθ = 1.2.
This is represented by initial condition ∂xθ = 0.935 and is shown in Fig. 12a, along with
its evolution using the SED function. The width of the wide transition layer decreases to
produce ∂xθ = 1.2 transition layer. The total free energy decreases as shown in Fig. 12b.
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(a) (b)

Figure 11: Temporal evolution of θ for initial conditions ∂xθ=1.2 wide transition layer (l = 10) using the SED
function, α = 0.37 is shown in (a) and the evolution of total free energy is shown in (b). The system produces
the final equilibrium profile corresponding to max|(θt+dt − θt)/dt| < 1 × 10−14 and |(F t+dt − F t)/dt| <
1× 10−14.

(a) (b)

Figure 12: Temporal evolution of θ in (a) ∂xθ=0.935 wide transition layer (l = 10) initial conditions
and corresponding total free energy is shown in (b). The energy density function is SED and α = 0.37.
The system produces the final equilibrium profile corresponding to max|(θt+dt − θt)/dt| < 1 × 10−3 and
|(F t+dt − F t)/dt| < 5× 10−5.
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4.5. Handling kinks and non–convex energy density
The initial condition in Fig. 7a could evolve and produce a ∂xθ = 1.2 equilibrium transition
layer even with α = 0 as shown in Fig. 5a since the orientation profiles at all times during
evolution stay in the convex part of the energy density function, excluding the kinks which
are handled by the jump condition. Thus, α > 0 is not necessary in this special case.

However, in general, situations arise naturally when non-convex regions of the energy
density are visited by regions/subsets of the domain that are not single points. In such
situations, the evolution with α = 0 is ill-posed, and the simulations produce non-physical
oscillations in the θ profile as shown in Appendix C. This necessitates the use of α > 0,
which, incidentally, also arises naturally in the von-Neumann numerical stability analysis
thresholds for our numerical scheme. We note that α > 0 is not only eliminating the kinks
but also plays a crucial role in making the θ profile stable to small amplitude, high wave-
number perturbations as shown in Appendix A.

4.6. Grain Boundary Metastability
Experimental findings support the general thermodynamics belief that grain boundaries
exist for a very long time in a metastable state and vanish in the limit of infinite time [73].
This behavior is attributed to their preference for the lowest energy configuration due to
the presence of fluctuations in energy. This case study aims to showcase the evolution of
a few initial conditions with a temporally refined timestep and mesh size (∆x = 0.05) to
test the model’s ability to capture this aspect over an extended period. Fig. 13a shows an
initial condition with a wide transition layer placed between two grains and corresponding
results of evolution using the SED function. From Fig. 13a and Fig. 13b, the grain boundary
with an initial ∂xθ value of 0.65 quickly transitions to ∂xθ = 1.2 (within a non-dimensional
time of ∼ 2 marked with ‘A’ to ‘B’ in Fig. 13b). It maintains this state for an extended
period (approximately 453) while the grain boundary thickness gradually decreases at a low
constant rate until it eventually vanishes (∂xθ ∼ 0). In Fig. 14a, using the CED function
with the same initial condition as Fig. 13a, the grain boundary remains at ∂xθ = 0.65
for an extended period while the grain boundary thickness gradually decreases at a low
constant rate before eventually vanishing (∂xθ ∼ 0). This prolonged retention at ∂xθ = 0.65
demonstrates the CED function’s stronger metastability compared to the SED function. In
Fig. 13a, the grain boundary with ∂xθ = 1.2 using the SED function vanishes after a long
time. However, in Fig. 15a, the grain boundary with ∂xθ = 1.2 initial condition evolves
using the CED function, and the system equilibrates at t ∼ 48 with a very low residual
(max|(θt+dt − θt)/dt| < 1 × 10−8). Despite this, the ∂xθ = 1.2 grain boundary using the
CED function survives, indicating stronger metastability than the SED function independent
of the mobility. With a lower mobility term, grain boundaries evolving using the SED
function can persist for extended periods, akin to those evolving with the CED function.
The results demonstrate the model’s capability to capture grain boundaries’ metastable
behavior, supporting the general thermodynamics belief that they exist for extended periods
before eventually vanishing due to the lowest energy configuration favored by fluctuations
over infinite time.
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(a) (b)

Figure 13: Temporal evolution of θ for initial condition ∂xθ=0.65 wide transition layer (l = 10) using the SED
function, α = 0.37, and mesh size (∆x) = 0.05 is shown in (a). Figure (b) illustrates the evolution of total
free energy (blue curve) and the rate of grain boundary width change (red curve). On the red curve, regions
are labelled as follows. ‘A’ to ‘B’ corresponds to the transition from ∂xθ = 0.65 to 1.2, ‘B’ to ‘C’ represents
∂xθ = 1.2, ‘C’ to ‘D’ denotes the transition from ∂xθ = 1.2 to 0, and ‘D’ to ‘E’ represents the region where
∂xθ ≈ 0. The system produces the final equilibrium profile corresponding to max|(θt+dt−θt)/dt| < 1×10−3

and |(F t+dt − F t)/dt| < 5.1× 10−5.

(a) (b)

Figure 14: Temporal evolution of θ for initial conditions ∂xθ=0.65 wide transition layer (l = 10) using the
CED function, α = 0.37, and mesh size (∆x) = 0.05 is shown in (a). Figure (b) illustrates the evolution of
total free energy (blue curve) and the rate of grain boundary width change (red curve). On the red curve,
regions are labelled as follows. ‘A’ to ‘B’ represents ∂xθ = 0.65, ‘B’ to ‘C’ denotes the transition from
∂xθ = 0.65 to 0, and ‘C’ to ‘D’ signifies the region where ∂xθ ≈ 0. The system produces the final equilibrium
profile corresponding to max|(θt+dt − θt)/dt| < 1× 10−3 and |(F t+dt − F t)/dt| < 5.1× 10−5.
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(a) (b)

Figure 15: Temporal evolution of θ is shown in (a) for ∂xθ = 1.2 narrow transition layer (l = 1)using the
CED function for α = 0.37 and a mesh size (dx) of 0.05. The total free energy evolution is shown in (b).
The system produces the final equilibrium profile corresponding to max|(θt+dt − θt)/dt| < 1× 10−8 and
|(F t+dt − F t)/dt| < 1× 10−8.

5. Conclusions

The following conclusions are derived from the present work:

• A methodology is presented for incorporating experimentally measured grain bound-
ary energy functions into a phase-field like formalism, and the work is placed in the
context of existing literature, pointing to natural extensions for studying grain bound-
ary network evolution in 3-D polycrystalline materials.

• The present model is demonstrated using two energy density functions, namely, a
smooth energy density (SED) and a cusp energy density (CED) in 1–D. These are
the commonly fitted functions to the experimentally measured grain boundary energy
density data in the literature. The evolution dynamics of the CED function is faster
than that of the SED function.

• A computational scheme is presented to handle the constraints arising from the pres-
ence of kinks in orientation profiles and the strong non-convexity of the experimentally
measured energies.

• Various evolutions and their equilibria (in 1–D) recover idealized features of real phys-
ical systems such as equilibrium high–angle grain boundaries (HAGBs), grain rota-
tion, grain growth, heavily deformed (static) microstructure often observed after the
deformation process, and strong metastability. All the transition layers represent dis-
location walls, and many of the equilibria resemble polygonized domains.

• The difference in the final equilibrium orientation profile, final energy of the equi-
librium system, and evolution dynamics corresponding to different energy density
functions for the same initial conditions and simulation parameters, suggest that the
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shapes of the energy density functions play a crucial role in the overall microstructure
evolution.

While simplified, the 1–D situations our model addresses may be considered as a reasonable
idealization of the state of moderately curved/straight grain boundaries away from junc-
tions. Such ‘straight’ portions of grain boundaries of course move in reality, and it is a
future challenge for our experimentally informed setup, possibly within a more encompass-
ing description of coupled interfacial-bulk mechanics of defects as discussed in Section 1, to
demonstrate such behavior in higher dimensions as well as represent the mechanics of grain
boundary junctions. This hope is supported by the observation of Glasner [20] that, within
the A–G/C–N models, the “dynamics of the grain boundaries arise from the curvature of
the interfaces and variation in the “line energy” (associated with how sharply rolls meet
at the grain boundaries) along each grain boundary” (the latter interpreted as the ener-
getics of disclination distributions within grain boundaries), as well as the wish expressed
in [20] expressed as “more ambitious achievement would be to incorporate descriptions of
disclinations and other one dimensional defects together with grain boundary dynamics.”
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Appendix A. Stability of the ∂xθ = 1.2 grain boundary/transition layer

(a) (b)

Figure A.1: The temporal evolution of θ for the initial condition is shown in (a) ∂xθ = 1.2 transition layer,
with the addition of sine perturbations of the form 0.03× sin (x/0.03) and corresponding total free energy is
shown in (b). The energy density function is SED and α = 0.37. The system produces the final equilibrium
profile corresponding to max|(θt+dt − θt)/dt| < 1× 10−3 and |(F t+dt − F t)/dt| < 2.9× 10−5.

Appendix B. Inadequacy of the J2 ‘formulation’

(a) (b)

Figure B.1: The temporal evolution of θ for the initial condition is shown in (a) ∂xθ=1.285 narrow transition
layer (l = 1) and the corresponding total free energy is shown in (b). The energy density function is SED
and α = 0.

The J2 ‘formulation’ in Eq. (16) is obtained by formally using the product rule on the
J term in Eq. (15). The Eq. (16) is numerically discretized using the central difference
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(a) (b)

Figure B.2: The temporal evolution of θ for the initial condition is shown in (a) ∂xθ=1.2 narrow transition
layer (l = 1) and the corresponding total free energy is shown in (b). The energy density function is SED
and α = 0.37.

formula in space and by the forward Euler method in time, and the corresponding fully
explicit numerical discretization is given by

θt+dt
i − θti

dt
= −α

[
θti+2 − 4θti+1 + 6θti − 4θti−1 + θti−2

(∆x)4

]
+ J2

(
∂xθ

t
i

) [θti+1 − 2θti + θti−1

(∆x)2

]
. (B.1)

Fig. B.1a shows the initial condition that is the same as the initial condition in Fig. 5e and
evolves using Eq. (16). The initial condition ∂xθ=1.285 is slightly away from the equilibrium
trough at ∂xθ=1.2 but it is still in the convex region of the SED function curve shown in
Fig. 3. The θ profile at t = 0.001 shows non-physical oscillations near the transition layer
and the corresponding total free energy in Fig. B.1b also increases with oscillations. The
system shows more non-physical behavior as time progresses. Fig. B.2a shows the initial
condition that evolves using Eq. (16) with a small α (α=0.37). The initial condition is
the same as that of the initial condition in Fig. 7a. Even with α = 0.37, the θ profile
at t = 0.1781 shows oscillations near the transition layer, and the corresponding total free
energy in Fig. B.2b also increases with oscillations similar to the initial condition in Fig. B.1.
These results signify that Eq. (16) cannot handle the initial conditions with kinks whereas
the same initial conditions in Fig. 5e and Fig. 7a evolve using Eq. (15) produce physically
natural evolutions and the final equilibrium θ profiles. Even with a smooth initial transition
layer, the J2 ‘formulation’ produces non-physical θ profiles with progress in time as shown in
Fig. B.3c. For the same initial condition, the J formulation produces a physically reasonable
θ evolution, as shown in Fig. B.3a.

36



(a) (b)

(c) (d)

Figure B.3: The figures in the left column show the temporal evolution of θ for smooth transition layer
initial condition in (a) using J formulation and (c) J2 ‘formulation’ corresponding to ∂xθ=1.2. The figures
in the right column show the evolution of corresponding total free energies in (b) and (d), respectively. The
energy density function is SED and α = 0.37.

Appendix C. Non-physical behavior for α = 0

The initial condition ∂xθ=1.05 shown in Fig. C.1a is in the non–convex region of the SED
function curve shown in Fig. 3 and α = 0. The θ profile at t = 0.09 shows non-physical
oscillations near the transition layer and the corresponding total free energy in Fig. C.1b also
increases with oscillations. The system shows more non-physical behavior as time progresses.
Therefore, it is essential to introduce α > 0 to attain a physically reasonable θ evolution as
demonstrated in Section 4.3.
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(a) (b)

Figure C.1: The temporal evolution of θ for the initial condition is shown in (a) ∂xθ=1.05 narrow transition
layer (l = 1) and the corresponding total free energy is shown in (b). The energy density function is SED
and α = 0.
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